ANALYSIS OF THE LIMITING REGIME OF A CONTINUOUS
PROCESS OF MASS CRYSTALLIZATION OF SALTS
FROM SOLUTIONS

A. |l. Moshinskii UDC 548.01:66.065

Crystallization of a polydisperse system of crystals with continuous organization of the process is
investigated. The statement of the problem includes two characteristic time scales: the time of transfer
of particles through a crystallizer and the "growth” time of the crystals. A variant where the first time is
substantially larger than the second one is analyzed. Expansions useful for describing the process with
each of the above time scales are constructed by a small-parameter method.

Introduction. The process of mass crystallization of salts from solutions is described in a manner exhaustive for
practical needs, using the function of size distribution of crystals F. Knowledge of this function makes it possible to trace
the time variation of such characteristics of a polydisperse system as the number of particles, their average size, the total
volume of crystals in the system. A characteristic feature of equations for the process of mass crystallization is their
nonlinearity, which is mainly the reason for the relatively small number of exact solutions obtained for these equations,
and even then basically for a periodic process. For a continuous process it is the stationary solutions that are easiest to
determine. In this case the equations of the problem are transformed into ordinary differential ones (the original equations
were in partial derivatives), and the nonlinearity manifests itself in an algebraic manner: it reduces to the solution of a
transcendental equation. The process in the regime of ideal mixing is dealt with here. Nonstationary problems are much
more intricate. In this case one is usually interested in how the process reaches the stationary regime (transient process) as
well as in the stability of the stationary regime and the related development of self-excited oscillations. The intricacy of
problems of nonstationary mass crystallization enables us to consider reduction of the problem to a system of ordinary
differential equations or to integrodifferential equations of a simple form to be a certain achievement since it often turns
out that it is much easier to investigate these equations than the original ones. The idea of special features of the analysis
of equations for mass continuous crystallization and the approaches applied there can be gained, for example, from [1-6].
We note that as concerns the methods of investigation the process of crystallization is similar to that of mass dissolutional,
though there are certain differences in the statement of additional conditions, and so on.

Here using small parameter methods [7, 8] we will construct asymptotic solutions of the equations of continuous
crystallization in one limiting variant.

Statement of the Problem. We will take the basic equations of the problem in the form

8F ot + UCA (Fir™)or = [F, (r, ©) — F(r, Oy, ey

d€ldv = —pUC [ F*~*F (r, vy dr + = (C, — C)/1y, @)
0

where the rate of crystal growth is taken to depend on the supersaturation C and the crystal size r by the formula V =
UC/r>. Here U and « are constants. We assume that from the concentration of the dissolved solid phase an equilibrium
portion is subtracted, and thus the total supersaturation release corresponds to C = 0. A similar law for various « is
usually encountered in practice. A more intricate dependence on ¢ - go(é), »(0) = O (one often takes w(é) = UCY k =
const) — creates no principal complications. The parameter r, expresses the characteristic time of transfer of the crystals
through an apparatus. It is equal to the ratio of the crystallizer volume to the volume flow rate of the solid phase. Trans-
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fer of the solute may occur, generally speaking, with another rate. This circumstance is taken into account by the parame-
ter %, equal to the ratio of the flow rate of the target substance in the solution to the flow rate of the substance in the
crystals. The constant 8 characterizes the shape of the crystals, their density, etc. In general this parameter is to be
prescribed such that it correctly describes the rate of transition of the substance from the solution to the solid phase, which
is determined by the second term in Eq. (2). The first term in this equation describes the variation in the concentration of
the substance in the solution, and the third one describes transfer of the substance through the crystallizer with allowance
for the incoming flow with the target component concentration C., which will be considered constant. The terms in Eq. (1)
determine a variation of the distribution function (8F/d7) caused by crystal growth (the second term) and crystal transfer in
intensive mixing (the third one). The derivation of the system (1), (2) from a more general one, taking into account
longitudinal mixing in the continuous and dispersed phases and a more detailed discussion of some parameters, is given in
[6]. In particular, here we take no account of the influence of fluctuations of the crystal growth rate on the process.
Equations (1) and (2) supplement the initial and boundary conditions:

Flo=F(), Cl_y=C" Fir¥_,=JCUO), 3)

r=0

where JC™ is the nucleation intensity (J and m are constants). Here we have taken a power form of the law for the intensity
of formation of a new phase, which is often used in practice. We introduce the dimensionless variables and parameters:

f = FBot/C®, fo = Foppyjce, C =CJCe, C,=C,/C° z=rlp, @
Ty = p“+]_/UC°, =1/, & =11, [«(z, )= F,(r, ©)Bp*C",

where p is the scale for the crystal size, which can be determined, for example, from the character of variation of the
initial distribution function Fo(r). In the variables of (4) problem (1)-(3) is written as

3f10t -+ Ca 1)z = elf, (2 ) —F (2, D, ®)

dCldt = —C f 7% (2, H)dz + ex (C, —OC), (6)
0

flyg =@, Cl_,=1 [/z*%,_,=BC" @)

where B = JBo* 4(CY YU, n =m ~ 1. We pomt out that it would be possible to choose the scale p for the crystal size
by setting B equal to unity.

Relations (4) show that problem (1)-(3) contains two characteristic times 7, and 7,. Depending on the relation of
these scales these or other terms will prevail in certain time scales. Here we will consider the variant ¢ << 1 and will
construct the solution of problem (5)-(7) using a perturbation method [7, 8].

External Solution. We seek a solution of the problem in the form of the series

fe, ) =folz O +efs(@ D+ . C)=Colt)+eCy(d) + ..., ®)

on substitution of which into relations (5)-(7) with separation of terms of the same order with respect to ¢ we arrive in the
main approximation with respect to e at the problem

Ofo/0t + Cy0 (fo/za)/az =0, )]
dColdt = —C, S Zg—afo (z, ) dz, . (10)
0
fo|,=0 = fo (Z), Cﬂlt_—_o = l’ fO/zaL,o = BC(,). (11)

Let us introduce the moment characteristics of the function f, (and similarly of other functions) by the formula

o> i= [ Zhate, Dde (12)
0
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We multiply Eq. (9) by 2°, integrate over z within the limits (0, o), and add to the result Eq. (10) multiplied by a factor
of three. In the final analysis we obtain

d(3Co + ( fo ) 5)/dt = 0. (13)
Integrating Eq. (13) yields

3Co+ (foda=3+(f0)s=const. (14)

The main approximation with respect to e of problem (5)-(7) — system (9), (11), and (14) — is a characteristic
problem of periodic mass crystallization, which (with different values of the parameters) has been repeatedly (see, for
example, [9-14]) dealt with in the literature. In a somewhat more general statement this problem was investigated in [15,
16], where some exact solutions were obtained. The work [17] proposes an approximate algorithm of the solution to
problem (9), (11), and (14), giving an exactness fully acceptable in practice. Thus we regard the solution of the given
problem (i.e., the function f; and others) as well known.

We note some facts established earlier [15]. The solution of the problem, i.e., the function fy(z, t), as i > oo tends
to an equilibrium value, which will be denoted by f(z, o), with C, tending to zero. As for the function C, it does not
attain zero and tends to some constant, being of first order with respect to the small parameter . The distribution function
f has f;, as its "intermediate” limit. Once the solution has reached fy(z, o), a slower evolution of the distribution function
with the characteristic time 7, begins, or, according to the terminology of [7, 8], changes occur in the system with an
“internal time" T = 7/7; = et. Thus, we are led to the need for constructing the "internal” expansion to more completely
describe the solution of the problem. It is noteworthy that in this paragraph we assumed the function f, to be of the order
of unity with respect to the small parameter e. We will subsequently hold to this assumption. Otherwise constructing the
"internal" expansion will change slightly.

Internal Solution. We write in the internal variables the equations of the problem as

OFIOT + (Cle) B (f12%)/0z = [, (2, T)—F(z, T), (15)

dC/dT = — (Cle) { 22~ (z, T)dz + % (C, —OC). (16)
0

Since the function f. does not appear in the main approximation of the external solution, we will subsequently consider 7,
to be the scale of its variation, which corresponds to the description of Eq. (15). The limiting values of f, and C,, as t >
oo, as well as the form of Eqs. (15) and (16) make it possible to choose the internal expansion in the following manner:

fe N=he N+uEeke D+ ..,
E(T)éaﬁo(ﬂ+ v(s)z',l(T)—I-..., ‘

whose substitution into (15) and (16) with separation of the main terms yields the equations [u(e) = 0, v(e)/e = O for ¢ -
0]

a7

fol0T +Cod(Fulz)10z = fo (2. TV —Fal2, T), (18)
ColD) [ 27T, Ty = 4C, = CoD) ¢ s (19
0

where with the overscore we denote the sought values of the internal expansion. We will subsequently assume that C. #
0; otherwise the problem will be noticeably simplified since we will obtain C, = 0, and Eq. (18) will essentially become
an ordinary differential one. ;
Equation (16) has acquired the "stationary” form (19) in the main approximation, and therefore for C, no initial
condition is needed. The additional conditions for Eq. (18) obtained using the procedure of limiting joining [7, 8] become

Folyeg = Fo(z, o), Tol2%|,_ =0. (20)

159



When deriving boundary condition (20) we consider that in boundary condition (7) n > 0, which is usually encountered in
practice. It is the structure of boundary condition (7) that makes it possible to determine the form of the functions u(e) and
v(e) in (17). However, here we will confine ourselves to the terms of the basic approximation as earlier in the external
solution.

The moment characteristics of the process are of certain interest since they are proportional to the integral vari-
ables: the total volume of the crystals, the number of crystals, etc. To calculate the zero moment, we will derive the
corresponding equation, for the purpose of which we integrate Eq. (18) over z between the limits (0, o). In view of (20)
we obtain the equation |

d<Fo>oldT = (fudo—(Fod o @1)
whose integration yields the complete kinetics of variation in the total number of crystals in the internal solution:

CFodo=(fadot(Folzs ) 0—C fud olexp(—T). 22

In integrating (21), for simplicity of writing the expressions we assumed f. = const (T) and hence (f.), = const (T). The
same will be assumed subsequently in solving the moment equations. In a similar way we derive the equation for the third
moment, which is proportional to the total volume of the crystal:

d<_fo>3/dT=(f*>3+3MC*——<70>3. (23)
The solution of Eq. (23) is analogous to (22):
(fora=1¢ fa) s+ 3%C Il —exp(—T)] + < fo(z, ) )zexp(—T). 24

We will give one more useful equation for the moment characteristics. We multiply (18) by Z™* (a < 2) and
integrate over z between the limits (0, o). As a result, taking (19) into account, we find

d<Fo) 2aldT = fo sa— " fo) 2a = KCy (2 — D < Fo > 1-20/ < fo ¥ oo (25)

With & = 2 and o = —1 we come to the known equations (21) and (23), applicable in a wide range of variation of a.
With o« = 1/2 we obtain a new equation for the moment (f;),,. The zero moment, entering in (25) with « = 1/2, should
be considered known (expression (22)). The case o = 1/2 is of certain practical interest, since it is realized in crystallizers
at Reynolds numbers exceeding 500 [18]. Making use of (19), the equation for the supersaturation C, can be written
instead of (25). Once the function C, is found, the problem of determining the distribution function from Eq. (18) becomes
linear, whose solution is easily found, for example, by the method of characteristics. We note that the problem of continu-
ous crystallization with « = 1/2 may be reduced to a system of ordinary differential equations for the moments, without
assumption of the smallness of the parameter e (see [6]). With @ = 2 together with the kinetics of the number of crystals
(22) we also obtain, as follows from (19), the law of time variation of the supersaturation Cy and hence, once Eq. (18),
which is linear now, is solved, the distribution function f;. The given law for the growth rate was used in [12] and other
works in periodic organization of the process, and in the same manner as for the variant « = 1/2, it reduces to the
"moment" system [6] in a more general case. In yet another variant of the kinetic regime o = 0, which is important in
practice, Eq. (25) can be used, since it gives the relation between the second and first moments. Obtaining in the usual
way the equation for the first moment

d(Toy dT = (Fu)1— Fod1 +*CIFod of (Fod e (26)

and finding the kinetics of the zero moment (22), we in essence have arrived at a closed system of equations ((25) with
o = 0 and (26)) for determining the first and second moments and hence the supersaturation, taking into account (19) with
a = 0. Usually in the kinetic regime one has to consider a larger number of ordinary differential equations for the
moments [3, 5, 9, 11, 12].

Reduction of Problem (18)-(20) to an Integrodifferential System of Equations. Construction of various expres-
sions of the given item is useful for practical purposes if the kinetic dependences found are deficient and a more detailed
description of the process is required, i.e., formation of the function of size distribution of the crystals. Direct numerical
integration of nonlinear system (18), (19) is not always convenient and does not yield the analytical structure of the sought
solution.

160



Al _
16 y "
l [ 170 P
/ v

1'2 B 7 Urﬂ
0,8 r 0’6 /
04t 04

5 5 s 1 012 1 5 1 )
0 05 10 15 20 T 0 85 10 15 20 T

Fig. 1 Fig. 2
Fig. 1. Solution of Eq. (33) with 1) @ = 0; 2) 0.5; 3) 1.

Fig. 2. Kinetics of supersaturation in the internal solution: 1) a = 0; 2) 0.5; 3) 1.

Following {6, 15, 19}, we introduce the new variables
b =To2 C=2a 1), dMdT =Ty, A,_,=0, 27)
in which Eq. (18) becomes
N/OT + (AMdT) /0, = ¢, — ¥, (28)
where Y.(¢, T) = f./z®, and the additional conditions take the form
Ylreo = 80 = fo(z, 00)/z% ¥l,_,=0. 29)

Here the variable z is to be expressed in terms of £ according to (27). Between the moments of the function v with respect
to the variable £ and the moments of the function f; with respect to the variable z the relation

o=+ 1)//TD (30)

i@+ 1y
is easily established {6]. Applying the Laplace transform with respect to the variable ¢ to Eq. (28), after some calculations
we arrive at the expression for the function y

T
P @ T)=exp(—T) (gL~ ATNHL—1M+ [, {IL—r(TD) +
0
€3V

+ (), X} HIE—A(T) + A () exp (x)dx] , H(z):{l’ 2>0,
0, z<0,

where H(z) is the Heaviside function. From here it is easy to find the moments of the function y:

- r .
¥y =exp(=D{{[L+MTW gQ)dl + | exp(x)dx | [y + AN =1V ¥, (4, x)dy|. (32)
X |

0 0

Now, making use of relation (19) and the determination of the parameter A of (27), we substitute j = v = 2 — a)/(1 +
«) into (32). Thereafter we obtain

o T w©
(%C, /(1 + o)V exp(T)dT/dh = [ (L + A (D g Q) dt + S exp (x)dx \ [y + A (T)— 4 (O by (9, x)dy (33)

0] 8 o

— the basic integrodifferential equation of the problem.
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Indeed, solving Eq. (33), i.e., obtaining the function A = MT), we will determine the distribution function by
expression (31) and any moment thereof by (32). The kinetics of supersaturation is found either by differentiating this
function according to (27) or from relation (19) with the aid of the moment of order y. We point out that with positive
integer values of y Eq. (33) may be reduced to an ordinary differential one.

Figure 1 presents some examples of a numerical solution of Eq. (33). The kinetics of supersaturation correspond-
ing to these solutions is shown in Fig. 2. It is assumed that a zero-size monodisperse fraction is supplied to the crystallizer
inlet, i.e., (£, T) = ¥ud(¢) (Y= = const), and the initial distribution function of the internal solution g(£) also expresses
a monodisperse composition, which occurs in the complete process (including the external solution) with a monodisperse
seed and negligible influence of nucleation [B - 0 in (7)].

In the example use was made of the value of the dimensionless crystal radius, equal to 1.5, i.e., the function
g() = gé (¢ — 1.5) (g = const). It is easily seen that the same degree of monodispersion will also be found in the
variables (z, f) without emergence of additional multipliers. In the calculations use was made of the following normaliza-
tion: ¢ = g =xC./(1 + a)".

The lines M(T) in Fig. 1 are fairly close to straight lines, which may be used to construct approximate solutions.
We note that such an approximation was in essence applied in [1, 2] and other works by the same authors in deriving the
basic evolutionary equation of crystallization etc. The data of Fig. 1 confirm to some extent the admissibility of a similar
approach.

The curves in Fig. 2 asymptotically attain stationary values of supersaturation, which are obtained below (see
formula (38)). This served as a check for accuracy of the calculation. It should be remembered that only the "internal”
value of supersaturation is presented, without the factor €. A general pattern of the variation of supersaturation in the given
example is derived from its (asymptotic) decrease to zero in the zero approximation, with respect to €, of the external
solution and the evolution of the order of ¢, as a first approximation and at large values of the time (transition to the
internal solution with the time scale 7,), of supersaturation growth at the expense of the "source” C.. It is the latter that is
characterized by the curves in Fig. 2.

Stationary Solution. Let the function f. and hence ¢, be independent of time. Then from (31)-(33) by the limiting
transition T - oo the stationary solution ¥ = y.,(£) can be obtained with certain assumptions. However, it is easier to
directly integrate the stationary equation (28) in view of the fact that INdT = C, = const. Using boundary condition (29)
we have

¢k o
b, (§) = exp(—UCo) | ¥, (2)exp (L/Co) dT/Co. (34)
0

Calculating the moment of the function y,,(£) of order y and substituting the result into (19), we arrive at the following
equation for determining the equilibrium value of supersaturation:

“0=%Cy/(L + " = [ ¥, @ exp Ty d { " exp(—/Cy) dn. (35)
0 {

Under the condition of the problem w and C, as well as the function y. cannot be negative. It is easily seen in this case
that w as a function of C, will be monotonically increasing (for example, it can be checked that w'(C,) > 0). It is also not
difficult, replacing 5" by its value at the lower limit of internal integral (35), to obtain the estimate

@>Co{Pydy Co=>0, (36)

from which it follows that w also tends to infinity with indefinitely increasing C,. As C, - 0 for functions y. of a certain
class by the saddle-point method we obtain the asymptotic expression

0=Co( Py by Co—0, 37

which was to be expected on the basis of stationary equation (15) as C, - 0. Relation (37) makes it possible to replace
strict inequality (36) by a nonstrict one and to establish that the interval of the variable C, € (0, o) corresponds to the
interval of the function w € (0, o), and since this function is continuous and monotonic, it has the unique reciprocal
C, = Cy(w), i.e., Eq. (35) is uniquely solvable in relation to the sought value of the equilibrium supersaturation C,. The
data of the argument are of the "physical” level of rigor.

162



In particular, we did not specify the class of the functions y.(£). However, for the physically important case of
continuous functions ¥.(£) tending rapidly enough to zero as £ - oo (in practice y.(£) is finite, i.e., . = 0§ = £ =
const > 0), all steps of the evidence for the existence and uniqueness of the root in (35) are rigorously substantiated.
Nevertheless, to simplify calculations, generalized functions are often used in applications. In the given problem, when the
relations (36) and (37) are to be refined, ¢. = N&(&), characterizing the supply of the monodisperse system of zero-size
crystals to the inlet of the apparatus, may serve as such a function (6(§) is the Dirac delta-function). In this case Egs. (34)
and (35) are simplified, and the latter yields an explicit expression for the sought root:

Co = {Q/[NT (1 + p)} /09, (38)

where I'(z) is the Buler gamma-function. One more variant — a combination of a continuous function and 6(§) — essential-
ly reduces to the above-discussed cases by dividing (35) into two terms. Here it is also easy to check the existence of a
unique root of Eq. (35). We will not elaborate on other examples of the analysis of the existence of roots in (35). Usually
these problems are solved without difficulty with a specific definition of the function ¥.(£).

Crystallization with Recycling. To produce a composition of higher quality, in practice the supply of a portion of
the crystals from the apparatus outlet to its inlet is used. It is usually small crystals, which have not managed to grow to
the required sizes. To describe this phenomenon, the function of the inlet f. in Eq. (5), etc., should be modified by adding
the corresponding fraction of the function f to it. In this case account must be taken of the fact that the recycled particles
arrive at the inlet with some delay, which in the general case may depend on the crystal size. For small particles the given
dependence is apparently of little significance; therefore we assume the delay time to be identical for all crystals and equal
to 5. Since transfer of the substance from the crystallizer outlet to the inlet is related to its transport through pipelines,
etc., it is natural to assume that the time 7, is of order 7,. In this case the given effect will be unimportant in the main
approximation of the external solution and will solely in the internal solution, which will be considered further.

The fraction of recycled particles depends on the method of grading the particles at the outlet from the crystallizer,
which may lead to different effects. We describe the given phenomenon using the function E(z), which, being multiplied
by f(z, T — T,), where T; = 7,/7,, yields the value, corresponding to recycling, of the distribution function entering the
system, i.e., the function f.(z, T) in (15) should be replaced by

E@fz T—T)+ [, T) (39)

Ideally, the function E(z) should be a step function, expressed in terms of the Heaviside function: E(z) = H(z, — z). This
indicates that all particles of size smaller than z,, will be passed through the crystallizer again. In solving the corresponding
equations account must be taken of the fact that the value of the function f(z, T — T,) should be assumed equal to zero for
T < T, i.e., until the first portion of recycled particles arrives at the inlet of the apparatus.

Instead of (33) the basic equation of the process will be

@

(%C /(1 + o) exp (T)dT)dh = {5 + 2 (M g(§)dL +
b (40)

(g + M (T) =2 (O e (g, 0+ E@ ¥y x—Ta)ldy.

T

+ { exp(x)dx

8

ot ¢

It should be considered together with the equation for the distribution function:

7
v@E T)= eXp(——T){g E—AMNHIE—AD]+ fexp ()P (@, x) H (@) +
' ¢ (41)

+ E(@ (@, x—Tyldx}, @ =F—r(T)+A()

which noticeably complicates the problem. No basic difficulties emerge only in analysis of the stationary solution, which,
taking into account that the time argument disappears and hence the delay is not taken into account, reduces to the expres-
sion

b0 = (U exp [ Bz — LT} | v trexs ([t — [ B (0)de) Ce) .
0 9

0
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It is also easy to generalize Eq. (35) for determining the equilibrium value of C,.

Conclusions. The basic equations of continuous crystallization (1) and (2), given the small parameter e, are solved
by constructing two expansions: (8) and (17), describing the process respectively in the initial stage (for times of order 7,)
and in the region of times of order 7,. The main approximation of the first expansion (9)-(14) was investigated earlier [9-
17]. The main approximation of the second expansion is reduced to a solution of integrodifferential equation (33). Some
"moment” solutions of the problem of the internal expansion (8) are found: (22) and (24), and cases of reduction of the
problem for the basic approximation to a system of ordinary differential equations are stated. The stationary solution (34)
is considered whose complete investigation is reduced to transcendental equation (35). It is shown that this equation has a
unique solution. Generalization of the obtained relations for the presence of recycling is discussed. The obtained results can
be applied to calculating the characteristics of crystallizers operating in the continuous regime.

NOTATION

C, dimensionless supersaturation of solution; C°, initial value of supersaturation; C(t), components of expansion of
supersaturation with respect to the small parameter e in the external solution; C(T), supersaturation in the internal solution;
C;, components of expansion of supersaturation in the internal solution; F., function of size distribution of the crystals at
the inlet to the crystallizer; F(r), initial value of the distribution function; f, f(z, t), dimensionless distribution function and
components of its expansion in the external solution; f, f(z, T), dimensionless distribution function and components of its
expansion in the internal solution; &(z), Dirac delta-function; e, small parameter; 7, time; ( )j, designation of the moment
of order j.
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